REWIND: Real-Time Egocentric Whole-Body Motion Diffusion
with Exemplar-Based Identity Conditioning

Supplementary Material

S.1. Video Results

The attached file presents the video results of our main
qualitative comparisons shown in Fig. 3-4 in the main pa-
per. In the video, our method is shown to estimate sig-
nificantly more accurate and natural motions compared to
the existing baselines (EgoWholeMocap [16] and EgoPose-
Former [17]).

S.2. Results with Varying Numbers of Example
Poses

In Table S1, we present additional results on exemplar-
based identity conditioning with varying numbers of exam-
ple poses. For our main experiments (Sec. 4.4), we use
10 example poses (N, = 10). We observed that using
fewer than 10 example poses (N, = 5) leads to a degra-
dation in motion estimation quality. Conversely, signifi-
cantly increasing the number of example poses (Nox = 25)
slightly improves body motion accuracy, but does not en-
hance hand motion accuracy. Based on these findings, we
selected N,, = 10 for our main experiments, as it provides
a good balance between motion accuracy and the ease of
example pose acquisition.

Table S1. Results with varying numbers of example poses. Ex-
cept for the number of example poses (/N.x), we use the same ex-
perimental settings as those in Examplar® from Table 1b in the
main paper.

Neo | MPIPEgoay | PMPIPEgogy | MPIPEgung | PMPIPE hgng

5 41.23 30.03 17.83 8.61
10 38.99 28.52 17.33 8.34
25 37.77 27.91 17.77 8.58

S.3. Implementation Details

In this section, we provide additional implementation de-
tails of our whole-body motion estimation model.

S.3.1. Input Encoding

Recall that our network takes as input a sequence of ego-
centric observations ®7, consisting of stereo images and
camera poses, along with a sequence of diffused keypoints
J +T and the corresponding diffusion time k. We first de-
scribe how each of the conditioning inputs is encoded.

Egocentric images. We first estimate 2D keypoints from
the egocentric images to encode the geometric information.
In particular, we use an EfficientNet-based encoder [13] and
a CNN-based decoder [8] to estimate 2D heatmaps. Our

encoder consists of four stacks of EfficientNet [13] blocks,
each containing three mobile inverted bottlenecks [1 1] with
width multipliers of [16,24,40] and depth multipliers of
[1,2,2], followed by Hard Swish [5] activation. Our de-
coder consists of three stacks of convolutional blocks, each
containing two 2D convolutional layers, followed by batch
normalization [6] and ReLU [1] activation.

Camera poses. Recall that each camera pose correspond-
ing to viewpoint v is represented by the camera rotation
R, € R3*3 and translation t, € R3*1. We first convert
the camera rotation to a 6D rotation representation [18] and
concatenate it with the camera translation vector. We then
apply a two-layer MLP, with output feature dimensions set
to 256 and 512 for the student and teacher models, respec-
tively. We use Swish [10] activation for the first layer, while
the second layer has no activation.

Diffusion timestep. We encode the input diffusion timestep
based on the sinusoidal functions, as proposed in [3, 4]. We
then apply a two-layer MLP with the same network archi-
tecture as the camera pose encoder.

Upper body poses. Our hand model additionally uses 3D
upper body keypoints as conditioning inputs. We flatten
the upper body keypoints and apply a two-layer MLP with
the same network architecture as the camera pose encoder.
Note that we use the ground truth upper body keypoints dur-
ing training, while during testing, we use the keypoints pre-
dicted by the body model.

S.3.2. Frame Feature Extraction

We now extract frame-wise features by aggregating the con-
ditioning input features. In particular, we concatenate the
estimated stereo 2D keypoints with the confidence scores
to the corresponding diffused keypoints J ¢ at each timestep
t. We additionally concatenate the features of (1) stereo
camera poses, (2) the diffusion timestep, and (3) an up-
per body pose (only for the hand model) to the correspond-
ing diffused keypoints. We then apply Graph Transformer
blocks [3], which consist of graph convolution [2] and self-
attention [15] layers, on the human skeletal graph. For the
teacher network, we use three Graph Transformer blocks,
with feature dimensions set to 512 and the number of atten-
tion heads set to 4. For the student network, we use a single
block with a feature dimension of 256 and 2 attention heads
to enable faster inference. Note that we use a linear layer
to estimate poses from these intermediate frame-based fea-
tures to incorporate auxiliary reconstruction loss (to be ex-
plained in Sec. S.3.4).

S.3.3. Temporal Feature Extraction

Given the frame-based features extracted for each timestep
t, we apply our Causal Relative-Temporal Transformer
(Sec. 3.2) to extract temporal features. For the teacher
model, we use three relative-temporal attention layers with
4 attention heads and a window size of 20. For the stu-
dent model, we use a single relative-temporal attention layer
with 2 attention heads with a window size of 8. We set the
output feature dimensions to 512 and 256 for the teacher
and student models, respectively. Finally, we apply a linear
layer to map the output temporal features to the sequence of
whole-body keypoints.

S.3.4. Network training.

We follow DDPM [4] for training our diffusion model. For
the teacher network, we diffuse the ground truth keypoints
with a randomly sampled diffusion timestep &k € [1, K] and
feed them as inputs to the network. For the student network,
the diffusion timestep is set to the maximum value k¥ = K to
enable single-step sampling. For noise scheduling, we use
cosine scheduling from 3; = 0.0001 to S = 0.02 with the
maximum diffusion timestep set as K = 1000 (refer to [4]
for details on the noise scheduling hyperparameter ().

We train our diffusion network for 2M steps using an
Adam optimizer with a learning rate of 5 x 1075, We use
a single batch consisting of 77 = 50 consecutive frames
for training, though our network can inherently generalize
to motions longer than the training sequences due to the
proposed architecture (Sec. 3.2). For the training loss, we
mainly adopt the loss function from MDM [14], which in-
cludes: (1) Lyimpre, the L2 distance between the predicted
and ground truth motion signals at £k = 0, (2) L, the
L2 distance between the predicted and ground truth motion
velocities, and (3) L., which regularizes the slided foot
keypoints (refer to [14] for computation details). We addi-
tionally use Lgqme, an auxiliary L2 loss between the poses
predicted from intermediate frame-based features and the
ground truth poses. Our final loss function, L, is defined
as:

‘Ctotal = Esimple +)\vel £vel + >\f00t ACfuot + >\fmme £frame- (1)

For Aver, Aoor and Agame, We initially use values of 300, 100,
and 1, respectively. However, we observe that the loss terms
involving motion velocities (L,,; and Ly,,;) converge to very
small values in the later stages of training. Thus, we in-
crease the values for A, and Mg, to 4K and 20K, respec-
tively, in the last 10K training steps. Note that, for training
the student model, we additionally use the distillation loss
Laisin (Sec. 3.3) with the weighting hyperparameter gy
setto 1.

Network inference. We use DDIM [12] for network in-
ference, with the number of sampling steps set to 10 for the

teacher network and 1 for the student network.

S.4. Details on Inverse Kinematics

To use our motion tracking results for driving meshes or
avatars (e.g., through linear blend skinning), we option-
ally perform inverse kinematics to convert the estimated 3D
keypoints to joint rotations. To this end, we train a sim-
ple inverse kinematics network that takes as inputs the 3D
whole-body keypoints along with the stereo camera trans-
lations (for estimating head poses) per frame and outputs
joint rotations. We build our network upon the Graph Trans-
former [3], similar to the frame-based feature extraction
module in our main diffusion model. We use five Graph
Transformer blocks [3], with output feature dimensions and
the number of attention heads set to 512 and 4, respectively.
After the last layer, we use a linear layer to map the final
features to the joint rotations in a 6D rotation representa-
tion [18]. For network training, we use L2 loss between
the predicted and ground truth joint rotations. We train
the network with an Adam optimizer and a learning rate of
5x 1075,

S.5. Details on Example Pose Estimation

To estimate 3D example poses of the target identity from
monocular images, we perform parametric body model fit-
ting to the pseudo ground truth 2D keypoints and depth esti-
mated by Sapiens [7], an off-the-shelf foundational human
model. In particular, we fit the parametric body model using
the loss £, defined as:

Eupt = EZD +)\depth Ldepth + /\reg £reg +)\height Eheight- (2)

where L;p is the L2 loss between the 2D projection of the
predicted 3D keypoints and the pseudo ground truth 2D
keypoints. Ly is the L2 loss between the predicted and
the pseudo ground truth depth maps. L, is the L2 loss
between the current body model parameters and the mean
body model parameters in the training set, penalizing de-
viations from the mean parameters. We also incorporate
Lheight, Which measures the L2 distance between the pre-
dicted and the ground truth height of the target identity to
reduce the scale ambiguity. We set Agepi» Areg> and Apeigns t0
100, 300, and 1, respectively. We perform 3K optimization
iterations using the AdamW optimizer [9] with an initial
learning rate of 5 x 1073, The learning rate is decayed by
0.023% after each optimization iteration.

S.5.1. Details on Baseline Comparisons

EgoWholeMocap [16]. EgoWholeMocap is the first ego-
centric whole-body motion estimation method, making it
the most relevant baseline for our work. It estimates
frame-based 3D poses through 2.5D heatmap estimation
and undistortion using the camera parameters, followed by

temporal refinement with an unconditional motion diffu-
sion model, where its DDPM [4]-based motion sampling is
guided by the initial 3D poses and their uncertainty scores.
In particular, given the clean motion signal Xq estimated by
the diffusion model at each diffusion timestep k, it defines
the mean of the Gaussian distribution for sampling x5 _; as:

Xo + W(Xe — Xo), 3)

where X, is a sequence of initially estimated whole-body
poses, and w is a weighting vector computed from their
uncertainty scores (refer to Eq. 5 in the original paper [16]).

Note that its original method considers monocular image
inputs. To make a fairer comparison to our method, which
uses stereo image inputs, we modify the method to (1) esti-
mate 2.5D heatmaps from each of the input stereo images,
(2) convert them to 3D poses using the known camera pa-
rameters, and (3) perform diffusion-based motion sampling
guided by these stereo initial 3D pose estimates by modify-
ing Eq. 3:

~ WRr

~ W ~
Xo + TL(XeL —X0)+7 —Xo), (€]

where X., and w, are the initial poses and uncertainty
scores estimated from the input image of viewpoint v.

(Xern

EgoPoseFormer [17]. EgoPoseFormer is one of the most
recently proposed stereo egocentric pose estimation meth-
ods. However, it was originally designed to estimate body-
only keypoints. To enable comparisons with our method,
we modify EgoPoseFormer to estimate whole-body key-
points during both the 2D heatmap and 3D pose estimation
stages. Additionally, we incorporate the input camera poses
(which are used in our method) by encoding them with an
MLP-based encoder and performing feature concatenation
in the 3D pose estimation network, similar to our approach.

References

[1] Abien Fred Agarap. Deep learning using rectified linear
units. CoRR, abs/1803.08375, 2018. 1

[2] Michaél Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In NeurIPS, 2016. 1

[3] Jia Gong, Lin Geng Foo, Zhipeng Fan, Qiuhong Ke, Hossein
Rahmani, and Jun Liu. Diffpose: Toward more reliable 3d
pose estimation. In CVPR, 2023. 1, 2

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 1, 2, 3

[5S] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In ICCV, 2019. 1

[6] Sergey loffe. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. CoRR,
abs/1502.03167, 2015. 1

(7]

(8]
(9]

(10]

(11]

[12]
(13]

[14]

[15]

[16]

(17]

(18]

Rawal Khirodkar, Timur Bagautdinov, Julieta Martinez, Su
Zhaoen, Austin James, Peter Selednik, Stuart Anderson, and
Shunsuke Saito. Sapiens: Foundation for human vision mod-
els. In ECCV, 2025. 2

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. Nature, 2015. 1

I Loshchilov. Decoupled weight decay regularization. In
ICLR, 2019. 2

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Search-
ing for activation functions. CoRR, abs/1710.05941, 2017.
1

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018. |

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2021. 2

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, 2019. 1
Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir,
Daniel Cohen-Or, and Amit H Bermano. Human motion dif-
fusion model. In ICLR, 2023. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1
Jian Wang, Zhe Cao, Diogo Luvizon, Lingjie Liu, Kri-
pasindhu Sarkar, Danhang Tang, Thabo Beeler, and Chris-
tian Theobalt. Egocentric whole-body motion capture with
fisheyevit and diffusion-based motion refinement. In CVPR,
2024. 1,2,3

Chenhongyi Yang, Anastasia Tkach, Shreyas Hampali, Lin-
guang Zhang, Elliot J Crowley, and Cem Keskin. Egopose-
former: A simple baseline for egocentric 3d human pose es-
timation. In ECCV, 2024. 1, 3

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. In CVPR, 2019. 1, 2

	Video Results
	Results with Varying Numbers of Example Poses
	Implementation Details
	Input Encoding
	Frame Feature Extraction
	Temporal Feature Extraction
	Network training.

	Details on Inverse Kinematics
	Details on Example Pose Estimation
	Details on Baseline Comparisons

