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Introduction Handle-Based Deformation Weights [1] 3D-Aware Image Deformation
Objective Bounded Biharmonic Weights [1] Images from [1] Laplacian-Based Deformation Energy (4)

We aim to enable 3D-aware image deformation with minimal m 4 @ V] ) Desired properties:
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o Hk : k-th deformation handle

Motivation * Wk : deformation weights associated with 4-th handle Deformed shape * n: number of vertices in the source mesh
For 3D-aware deformation, it is necessary to reconstruct the
iject in a 2D image to 3D space; however, it is not sufficient Laplacian Learning Network
in general.
— Modeling deformation often requires the shape Laplacian [1]. We introduce a novel network that can learn the shape Laplacian with several desired properties (i.e., positive

—» However, most of existing methods of image-based 3D semi-definiteness, symmetry and sparsity) from a 3D reconstruction.

reconstruction produce a surface without proper
consideration about intrinsic shape properties.
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