
  •         : k-th deformation handle
  •         : deformation weights associated with k-th handle                 

–
We aim to enable 3D-aware image deformation with minimal 
restrictions on shape category and deformation type.

Motivation 

For 3D-aware deformation, it is necessary to reconstruct the 
object in a 2D image to 3D space; however, it is not sufficient 
in general. 
→ Modeling deformation often requires the shape Laplacian [1].

→ However, most of existing methods of image-based 3D 
    reconstruction produce a surface without proper 
consideration about intrinsic shape properties.

We propose to take a supervised learning-based approach to 
predict the shape Laplacian of the underlying volume of a 3D 
reconstruction.
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  • Dataset: DFAUST [11]    • Evaluation Metric: Deformation Weight Error (L1 Distance) , Deformed Shape Error (Chamfer Distance, Hausdorff Distance) 
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Objective

Please visit our project page (QR code above) for more results,                     
including motion videos generated using our image deformation method.
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Laplacian Learning Network
We introduce a novel network that can learn the shape Laplacian with several desired properties (i.e., positive 
semi-definiteness, symmetry and sparsity) from a 3D reconstruction.

Bounded Biharmonic Weights [1] Laplacian-Based Deformation Energy (A)

                :  deformation energy

                :  cotangent Laplacian

                :  inverse mass

  •  n : number of vertices in the source mesh

Desired properties:
positive semi-definiteness /  symmetry / sparsity
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Images from [1]


