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(a) Generated two-hand interactions. (b) Generated two-hand-object interactions.

Figure 1. Two-hand synthesis with InterHandGen. We propose InterHandGen, an approach to generate two-hand interactions with or
without an object using a novel cascaded diffusion. To enable high-fidelity and diverse sampling, we decompose the modeling of joint
distribution into the modeling of factored unconditional and conditional single-hand distributions.

Abstract

We present InterHandGen, a novel framework that
learns the generative prior of two-hand interaction. Sam-
pling from our model yields plausible and diverse two-hand
shapes in close interaction with or without an object. Our
prior can be incorporated into any optimization or learning
methods to reduce ambiguity in an ill-posed setup. Our key
observation is that directly modeling the joint distribution
of multiple instances imposes high learning complexity due
to its combinatorial nature. Thus, we propose to decom-
pose the modeling of joint distribution into the modeling
of factored unconditional and conditional single instance
distribution. In particular, we introduce a diffusion model
that learns the single-hand distribution unconditional and
conditional to another hand via conditioning dropout. For
sampling, we combine anti-penetration and classifier-free
guidance to enable plausible generation. Furthermore, we
establish the rigorous evaluation protocol of two-hand syn-
thesis, where our method significantly outperforms baseline
generative models in terms of plausibility and diversity. We
also demonstrate that our diffusion prior can boost the per-
formance of two-hand reconstruction from monocular in-
the-wild images, achieving new state-of-the-art accuracy.

1. Introduction

Two-hand interaction is widely involved in our daily lives.
We coordinate our hands closely together when clasping,
praying, stretching, or engaging in social interactions. Mod-
eling and understanding two-hand interactions are thus cru-
cial for applications that require capturing human behav-
iors, such as augmented or virtual reality (AR/VR) and
human-computer interaction (HCI). Highlighting this im-
portance, numerous research endeavors have been dedicated
to interacting hands reconstruction. With the release of the
large-scale two-hand interaction dataset [42], various meth-
ods [24, 32, 33, 35, 41, 42, 54, 56, 70, 76] have been pro-
posed mainly for monocular two-hand reconstruction.

The under-explored part in the current two-hand interac-
tion literature is interacting two-hand generation. Although
there are generative models proposed for other human inter-
action domains (e.g., hand-object [10, 23, 25, 27, 28, 65] or
two-human [36, 44, 59] interaction), directly adapting them
for two-hand interaction leads to sub-optimal generations.
Compared to hand-object interaction that involves a rigid
object, two hands lead to significantly more complex inter-
actions due to the higher degree of freedom in two articu-
lated hands. Additionally, while human-to-human body in-
teraction is typically constrained on a shared ground plane,
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each joint of two hands has a full 6 DOF to allow more di-
verse interactions. Motivated by the advancement of uncon-
strained pose estimation leveraging a strong prior in other
domains [44, 47], our goal is to build a highly expressive
generative prior for two-hand interaction, which can be ef-
fortlessly incorporated into existing learning and optimiza-
tion frameworks.

In this paper, we introduce InterHandGen, a framework
that effectively learns the generative prior of two-hand in-
teraction. The important challenge in two-hand interaction
generation lies in its high data complexity caused by the
combination of hand articulations. To reduce the complex-
ity of learning such generation target, we propose to refor-
mulate the two-hand distribution modeling into the mod-
eling of single-hand model distribution unconditional and
conditional to the other hand, such that:

pϕ(xl,xr) = pϕ(xl) pϕ(xr|xl), (1)

where pϕ(·) is the model distribution, and xl and xr are
left and right hand shapes in interaction, respectively. By
leveraging the symmetric nature of the left and right hands,
we jointly learn both pϕ(xl) and pϕ(xr|xl) in the shared
hand parameter domain based on MANO [55] model. In
particular, we take a diffusion-based approach [22, 61] and
train a single denoising diffusion model via conditioning
dropout [21] to model both types of single-hand distribu-
tion. This way, the degree of freedom of each generation
process is effectively reduced. Importantly, this formula-
tion can be easily extended to two-hand and object interac-
tion generation, by simply adding an object conditioning c
to each of the terms in Equation 1.

In inference time, we sample one hand using the learned
model pϕ(xl) and the other hand conditioned on the pre-
viously sampled hand using pϕ(xr|xl) in a cascaded man-
ner. For conditional sampling, we use classifier-free guid-
ance [21] to achieve a better balance between fidelity and
diversity. To avoid sampling a physically implausible state
due to penetration, we also introduce anti-penetration guid-
ance that penalizes inter-penetration during the reverse dif-
fusion process. Furthermore, we show how to incorporate
the learned two-hand interaction prior into any optimiza-
tion or learning methods for reducing ambiguity in an ill-
posed setup, inspired by Score Distillation Sampling [49]
and BUDDI [44].

As there is no established benchmark for two-hand gen-
eration, we introduce a new evaluation protocol of two-hand
interaction synthesis. In particular, we extend the stan-
dard metrics used for generative modeling (e.g., FID [20],
KID [7], Diversity [48, 52, 63]) to two-hand interaction by
training a tailored feature backbone network. Our experi-
ments show that our approach significantly outperforms the
baseline methods on two-hand interaction generation with
or without an object. We also show that our diffusion prior

is useful for the downstream task of interacting two-hand
reconstruction from in-the-wild images, where we set new
state-of-the-art.

Our main contributions are summarized as follows:
• We propose an effective learning framework to build a

generative prior of two-hand interaction. Our cascaded
reverse diffusion approach shows significant improve-
ment over baselines in terms of fidelity and diversity.

• Our formulation is general and can be extended to more
instances. We show that our approach also achieves supe-
rior performance on two-hand interaction with objects.

• Our approach is a drop-in replacement for regulariza-
tion in optimization or learning problems. By incorporat-
ing our prior, we achieve the state-of-the-art performance
on interacting two-hand pose estimation from in-the-wild
images.

• We provide a comprehensive analysis of two-hand gener-
ation with a newly established evaluation protocol. Our
code and backbone network weights are publicly avail-
able for benchmarking future research.

2. Related Work
In this section, we discuss the related work on interacting
two-hand reconstruction, and hand-object and two-human
interaction generation. Note that the background on diffu-
sion models can be found in Section 3.1.
Interacting two-hand reconstruction. Various methods
have been proposed for interacting two-hand reconstruction
from monocular RGB [24, 32, 33, 35, 41, 42, 54, 56, 70,
76], multi-view RGB [4], or depth [43, 46, 62]. To address
self-similarity, self-occlusion, and complex articulations of
interacting hands, the recent methods mainly exploit at-
tention mechanism [35, 42, 54, 69, 76] and/or interaction-
aware shape refinement [33, 54, 56, 70]. Recently, Zuo et
al. [76] (which is concurrent work to ours) proposes to use
a variational autoencoder (VAE) [29] as a prior for monoc-
ular two-hand reconstruction. While their approach is spe-
cialized for monocular image-based reconstruction using a
specific network architecture, our approach can be used for
any optimization and learning tasks. In addition, our ex-
periments (Section 4) show that our diffusion-based prior
significantly outperforms the vanilla VAE used in [76] for a
generation task in all metrics.
Hand-object interaction generation. Most of the meth-
ods mainly focus on generating single-hand shapes condi-
tioned on an object [3, 10, 15, 23, 25, 27, 28, 65]. As the
existing single-hand and object interaction datasets [2, 9,
14, 18, 19, 31, 39] are mostly limited to grasping [13], the
state-of-the-art generation methods actively leverage con-
tact prior [17, 25, 38, 65] or physics simulators [23, 65]
to synthesize grasps that cannot be easily broken by ap-
plying external force [10, 23, 25]. However, in two-hand
interaction, each hand can arbitrarily move by itself, so



physical contact between hands does not necessarily oc-
cur. Thus, it is non-trivial to directly adapt the existing
methods that heavily rely on physical priors. In addition,
we consider the recent benchmark (ARCTIC [13]) on two-
hand and object interaction that captures various bimanual
scenarios (e.g., opening a box, operating an espresso ma-
chine). Since ARCTIC is also not limited to dense contacts
between object and both hands (e.g., grasping), our general
approach outperforms the most recent method on single-
hand and object interaction synthesis (ContactGen [38]) ex-
tended for two-hand and object interaction generation on
ARCTIC dataset.
Two-human interaction synthesis. More recently, a few
methods for two-human interaction synthesis have been
proposed. PriorMDM [59] and InterGen [36] introduce
diffusion models for text-driven two-human motion gen-
eration. BUDDI [44] (which is concurrent work to ours)
proposes an unconditional generation method of interact-
ing two-human shapes. It introduces a transformer-based
diffusion model to generate SMPL [40] parameters of two
humans jointly. In our work, we discover that directly mod-
eling the joint distribution of two hands leads to sub-optimal
generation performance due to the high data complexity. In-
stead, we simplify the learning process by decomposing the
joint distribution into conditional and unconditional single-
hand distributions and experimentally show that ours yields
significantly better generation results than BUDDI modified
to synthesize two-hand interactions.

3. Method
3.1. Preliminary

Diffusion Models. Diffusion models (e.g., [22, 61]) are a
class of generative models that learn to recurrently trans-
form noise zT ∼ N (0, I) into a sample from the target data
distribution z0 ∼ q(z0). This denoising process is called
the reverse process and can be expressed as:

pϕ(z0:T ) := p(zT )

T∏
t=1

pϕ(zt−1|zt), (2)

where pϕ is a model distribution parameterized by ϕ and
z1, ..., zT are latent variables of the same dimensionality as
z0. Conversely, the forward process models q(z1:T |z0) by
gradually adding Gaussian noise to the data sample z0. In
this process, the intermediate noisy sample zt can be sam-
pled as:

zt =
√
αtz0 +

√
1− αtϵ (3)

in variance-preserving diffusion formulation [22]. Here,
ϵ ∼ N (0, I) is a noise variable and α1:T ∈ (0, 1]T is a
sequence that controls the amount of noise added at each

diffusion time t. Given the noisy sample zt and t, the dif-
fusion model fϕ learns to approximate the reverse process
for data generation. The diffusion model parameters ϕ are
typically optimized to minimize Ezt,ϵ ∥ϵ− fϕ(zt, t)∥2 [22]
or Ezt,ϵ ∥z0 − fϕ(zt, t)∥2 [59, 63]. Note that exact formu-
lations vary across the literature, and we kindly refer the
reader to the survey papers [11, 68] for a more comprehen-
sive review of diffusion models.
Classifier-Free Guidance (CFG) [21]. CFG is a method
proposed to achieve a better trade-off between fidelity and
diversity for conditional sampling using diffusion models.
Instead of generating a sample using conditional score esti-
mates only, it proposes to mix the conditional and uncondi-
tional score estimates to control a trade-off between sample
fidelity and diversity:

f̃ϕ(zt, t, c) = (1 + w)fϕ(zt, t, c)− wfϕ(zt, t, ∅), (4)

where c is conditioning information and w is a hyperparam-
eter that controls the strength of the guidance. However,
Equation 4 requires training both conditional and uncon-
ditional diffusion models. To address this, Ho et al. [21]
introduces conditioning dropout during training, which en-
ables the parameterization of both conditional and uncondi-
tional models using a single diffusion network. Condition-
ing dropout simply sets c to a null token ∅ with a chosen
probability puncond to jointly learn the conditional and un-
conditional scores during network training. Due to its abil-
ity to achieve a better balance between fidelity and diversity,
CFG is used in many state-of-the-art conditional diffusion
models [8, 30, 45, 49, 57, 59, 63].

3.2. Problem Definition and Key Formulation

Our goal is to learn a distribution of 3D interacting two-
hand shapes pϕ(xl,xr) from the samples from a two-hand
data distribution q(xl,xr). We assume a situation where
one left hand xl and one right hand xr are interacting
with each other, following the existing two-hand interac-
tion benchmark [42]. For representing each hand, we
use MANO [55] model which is a differentiable statisti-
cal model that maps a pose parameter θ ∈ R45 and a
shape parameter β ∈ R10 to a hand mesh with 3D vertices
V ∈ R778×3 and triangular faces F ∈ R1554×3. Based on
MANO, we parameterize each hand shape as:

xs = [θs , βs, ωs, τs], (5)

where xs ∈ R64 represents a 3D hand shape of side s =
{l, r}, and θs and βs are the corresponding MANO pose
and shape parameters. ωs ∈ R6 denotes the root rotation
in 6D rotation representation [73], and τs ∈ R3 denotes the
root translation.

To learn the distribution pϕ(xl,xr) that captures plau-
sible two-hand interaction states, one straightforward ap-



proach would be to directly model pϕ(xl,xr) using a single
generative network. However, we observe that the direct
learning of joint two-hand distribution leads to suboptimal
results, as the target distribution involves highly articulated
hand shapes in close interaction, and its combinatorial na-
ture imposes high generation complexity. To address this,
our key idea is to decompose the joint two-hand distribu-
tion to model the unconditional and conditional single-hand
distribution instead, such that:

pϕ(xl,xr) = pϕ(xl) pϕ(xr|xl). (6)

Note that the joint distribution of two hands can now be
represented by the distribution of a single hand on one side
pϕ(xl) and that on the other side pϕ(xr) conditioned on xl.
By decomposing the problem of learning pϕ(xl,xr) into
two sub-problems of learning unconditional and conditional
single-hand distributions, we can effectively reduce the de-
gree of freedom of each generation target. This formula-
tion is general, and can be easily extended to two-hand and
object interaction generation, by simply adding an object
conditioning c to each of the terms in Equation 6. In what
follows, we explain our novel parameterization of pϕ(xl)
and pϕ(xr|xl) using diffusion models [22, 61]. Later in the
experiments (Section 4), we also show that this simple de-
composition leads to significant performance improvement
in interacting two-hand generation with or without an ob-
ject.

3.3. Training

For learning pϕ(xl) and pϕ(xr|xl) in Equation 6, one
straightforward approach is to separately train uncondi-
tional and conditional diffusion networks. However, there is
conceptual redundancy embedded in pϕ(xl) and pϕ(xr|xl).
Both distributions ultimately capture the plausible single-
hand shapes, where the differences lie in (1) the side of the
hand and (2) whether the distribution is unconditional or
conditional. Motivated by multi-task learning [6, 64, 72]
that has shown that joint learning of related tasks improves
both learning efficiency and accuracy by exploiting the
commonalities across tasks, we also introduce a training
mechanism that can jointly learn pϕ(xl) and pϕ(xr|xl) us-
ing a single diffusion network.

Regarding the difference in the side of hand, we pay at-
tention to the observation that shape symmetry exists be-
tween left and right hands. The existing MANO model [55]
indeed learns a unified hand model in the right-hand space,
where the left-hand model is obtained by horizontally flip-
ping the model shape space. Following MANO, we also
bring all single-hand generation targets into the shared do-
main. Since our hand representation is already based on
MANO, we follow the same mirroring transformation Γ
used in MANO [55] (please refer to the supplementary
for details) to map the left-hand generation targets into

the shared right-hand MANO parameter space for network
training. In particular, our training objective can be written
as:

• Learning pϕ(xr) from training samples of xr and Γ(xl);

• Learning pϕ(xr|xl) from training samples of (xr,xl) and
(Γ(xl),Γ(xr)).

This further augments the training data and improves gen-
eralization. More importantly, once we normalize the hand
side, our training objective becomes learning the uncondi-
tional and conditional distributions in the same right-hand
MANO parameter space (pϕ(xr) and pϕ(xr|xl)), rather
than learning one unconditional distribution and one condi-
tional distribution in the different hand spaces (pϕ(xl) and
pϕ(xr|xl)). Our new learning objective is now in the form
that conditioning dropout [21] (Section 3.1) can be directly
applied to parameterize both unconditional and conditional
models using a single diffusion network.

Let our diffusion network be Dϕ that takes a noisy hand
parameter xt, a conditioning hand parameter xl and diffu-
sion time t. As shown in Algorithm 1, we can train Dϕ to
enable both conditional hand generation (by taking the other
hand parameter xl as conditioning input) and unconditional
hand generation (by taking ∅ as conditioning input) via con-
ditioning dropout [21] (Step 3 in Algorithm 1). Later in
the experiments (Section 4), we show that training a unified
diffusion network for pϕ(xr) and pϕ(xr|xl) leads to better
generation results than training two separate networks.

Algorithm 1 Training via conditioning hand dropout.

Require: puncond : probability for conditioning dropout
Require: α1:T : diffusion noise scheduling

1: repeat
2: Sample (xr,xl) from q(xr,xl) or q(Γ(xl),Γ(xr))
3: xl ← ∅ with probability puncond
4: ϵ ∼ N (0, I)

▷ Compute diffused data at time t (Equation 3)
5: xt =

√
αtxr +

√
1− αtϵ

6: Take a gradient step on∇ϕ ∥xr −Dϕ(xt, xl, t))∥2
7: until converged

3.4. Inference: Cascaded Reverse Diffusion

After training our diffusion network, we can first sample an
anchor left-hand xl from the learned pϕ(xr) after flipping
the model space by Γ [55]. Then, we can sample an inter-
acting right-hand conditioned on the anchor hand xl from
pϕ(xr|xl) in the form of cascaded inference. Our over-
all inference procedure is described in Algorithm 2. Note
that E(·) denotes a function that computes the added noise
ϵ from the diffusion model prediction [59, 63]. In Algo-
rithm 2, we incorporate two types of guidance into the re-



verse process: (1) classifier-free guidance (CFG) [21] to
control a trade-off between fidelity and diversity in con-
ditional sampling (Step 11 in Algorithm 2) and (2) anti-
penetration guidance to avoid inter-hand penetration (Step
13 in Algorithm 2). As CFG is already discussed in Sec-
tion 3.1, we describe our anti-penetration guidance below.

Algorithm 2 Inference via cascaded hand denoising.

Require: wcfg : classifier-free guidance strength
Require: wpen : anti-penetration guidance strength
Require: Lpen : penetration loss function

▷ Sample anchor hand xl

1: xT ∼ N (0, I)
2: for all t from T to 1 do
3: ϵ̂← E(Dϕ(xt, ∅, t))

▷ DDIM [61] sampling
4: xt−1 ←

√
αt−1(

xt−
√
1−αt ϵ̂√
αt

) +
√
1− αt−1ϵ̂

5: end for
6: xl ← Γ(x0)

▷ Sample interacting hand xr given anchor hand xl

7: xT ∼ N (0, I)
8: for all t from T to 1 do
9: ϵ̂uncond ← E(Dϕ(xt, ∅, t))

10: ϵ̂cond ← E(Dϕ(xt,xl, t))
▷ Classifier-free guidance [21]

11: ϵ̂← (1 + wcfg)ϵ̂cond − wcfg ϵ̂uncond
▷ DDIM [61] sampling

12: xt−1 ←
√
αt−1(

xt−
√
1−αt ϵ̂√
αt

) +
√
1− αt−1ϵ̂

▷ Anti-penetration guidance (Section 3.4)
13: xt−1 ← xt−1 − wpen∇xt−1Lpen(xt−1,xl)
14: end for
15: xr ← x0

Anti-penetration guidance. Inspired by the existing work
on diffusion guidance on image domain [5, 12, 34], we
introduce test-time guidance to avoid penetration between
the generated two hands. In particular, we move the cur-
rent interacting hand generation xt−1 towards the nega-
tive gradient direction of the penetration loss function Lpen

at each denoising step (Step 13 in Algorithm 2). Let
Vt−1,Vl ∈ R778×3 denote mesh vertices recovered from
the noisy right-hand parameter xt−1 and the conditional
left-hand parameter xl using MANO [55] layer. In particu-
lar, we recover these vertices from clean hand parameter es-

timated from t−1 via DDIM [61] sampling
xt−1−

√
1−αt−1ϵ̂√

αt−1

to enable more robust loss computation [5, 34]. Then, our
penetration loss Lpen is defined as:

Lpen(xt−1,xl) =
∑

i, j ∈P(xt−1,xl)

||Vi
t−1 −Vj

l ||2, (7)

which is the sum of squared distances between the pene-
trated vertex Vi

t−1 in one hand and its nearest vertex Vj
l in

the other hand. Here, P denotes a function that returns a set
of penetrated vertex indices (i, j) and is defined as:

P(xt−1,xl) = {(i, j) | − nT
j · (Vi

t−1 −Vj
l ) > 0}, (8)

where j denotes the vertex index of Vl that is nearest to
Vi

t−1, and nj is a normal vector at Vj
l . This way, the

amount of penetration can be approximated by projecting a
vector joining the nearest vertices from the two hands onto
the normal vector at the anchor hand, similar to the existing
hand-object reconstruction literature [18].

3.5. Generative Prior for Two-Hand Problems

We now explain how our two-hand interaction prior can
be easily incorporated into any optimization or learning
methods to further boost the accuracy of the downstream
problems, such as monocular two-hand reconstruction. In-
spired by Score Distillation Sampling (SDS) [49] and
BUDDI [44], we treat our pre-trained two-hand diffusion
model Dϕ as a frozen critic that regularizes the current two-
hand interaction state (xl,xr) (e.g., predicted by a recon-
struction network) to move to a higher-density region. Our
diffusion-based regularization term can be written as:

Lreg = || S (Dϕ,xl,xr)− (xl, xr) ||2, (9)

where S(·, ·, ·) denotes a function that performs a single
forward-reverse diffusion step [44] that takes as input the
current two-hand interaction state (xl,xr) and outputs the
denoised interaction (x̂l, x̂r) estimated by Dϕ. Note that
we detach the gradients of the diffusion model Dϕ follow-
ing [44, 49]. Lreg can be incorporated as an additional reg-
ularizer into any loss function during network training or
shape optimization in a plug-and-play manner.
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Figure 2. Our network architecture. We use self-attention be-
tween the embeddings of the inputs (i.e., xt xl, t, and optional O)
to estimate the denoised hand parameter xr .



3.6. Network Architecture

We use a transformer-based architecture for our diffusion
model Dϕ. As shown in Figure 2, we first use two fully
connected layers with Swish activation [53] to embed the
input hand and conditioning hand parameters (i.e., xt, xl).
We also embed the diffusion time t using Positional En-
coding [22]. Then, we use four-headed self-attention [67]
to model the relationship between the input embeddings.
Lastly, the updated input embeddings are flattened and fed
to eight fully connected layers with ReLU [1] activation and
skip connections to estimate the clean hand signal xr.
Object-conditional generation. To enable two-hand
generation conditioned on an object, we can add a
global object conditioning c to model pϕ(xl,xr|c) =
pϕ(xl|c) pϕ(xr|xl, c). To incorporate the object condition-
ing c, we simply add a PointNet++ [51]-based embedding
branch (blue box in Figure 2) for an input object point cloud
O. Please refer to the supplementary for more details on our
architecture (e.g., layer configurations).

4. Experiments
4.1. Two-Hand Interaction Synthesis

Data. We use InterHand2.6M [42] dataset, which is the
most widely used interacting two-hand dataset. Following
the existing reconstruction work [33, 35], we use interact-
ing hand (IH) samples with valid annotation. The resulting
dataset consists of 366K training samples, 110K validation
samples, and 261K test samples.
Baselines. We first consider VAE used as a two-hand prior
for monocular reconstruction in [76]. We also consider
BUDDI [44], which is a recently proposed diffusion model
that jointly generates two human parameters. We modify
BUDDI to generate interacting two-hand parameters and
denote the resulting model by BUDDI*. We additionally
consider our method variations in which the modeling of
joint distribution is not decomposed (Ours w/o Decomposi-
tion) or separate conditional and unconditional networks are
trained to model the decomposed single-hand distributions
(Ours w/o Shared Network). Please refer to the supplemen-
tary for the details of the baselines.
Evaluation metrics. As there is no established benchmark
for 3D two-hand interaction generation, we build our own
evaluation protocol. Following the existing work on human
pose and motion generation [52, 63], we extend Fréchet
Inception Distance (FID) [20], Kernel Inception Distance
(KID) [7], diversity [52, 63] and precision-recall [58] for
evaluating the generated two-hand interactions. We also re-
port the mean inter-penetration volume in cm3 to measure
the physical plausibility. Note that FID, KID, and precision-
recall are originally proposed for evaluating the feature dis-
crepancy between the generated and the ground truth im-
age distributions. However, there is no pre-trained feature

extraction backbone for interacting two-hand shapes unlike
in the image [20] or human motion [52, 63] domain. To
address this, we train a backbone network to extract 3D
two-hand interaction features, whose network weights will
be released for benchmarking future research. Inspired by
FPD [60] that measures Fréchet distance of the generated
3D objects (e.g., chair, airplane) on PointNet [50] feature
space, we train PointNet++ [51] to regress two hand poses
in axis-angle representation and their relative root transfor-
mation from a 3D two-hand shape represented as a point
cloud. Note that, while it is possible to extract two-hand fea-
tures by specifically leveraging MANO [55] parameter or
mesh structure, we aim to propose a more general metric for
future work on two-hand interaction generation, that may
not be directly reliant on the MANO model. We rename
our two-hand-specific metric for FID and KID as Fréchet
Hand Interaction Distance (FHID) and Kernel Hand Inter-
action Distance (KHID), respectively.
Results. As shown in Table 1a, our method significantly
outperforms the baselines on most of the metrics. Espe-
cially, learning the decomposed two-hand distribution (rows
5-6) leads to noticeable performance improvement. While
Ours w/o Shared Network (rows 5) achieves the best preci-
sion score, our final method (rows 6) achieves significantly
better scores on the other metrics. We also notice that ours
achieves high scores on both precision and recall with a
good balance, while most of the baselines yield a high score
on either one of them. Figure 3 qualitatively shows the sam-
pled two-hand interactions using our method, which further
demonstrates that our prior captures plausible and diverse
two-hand interactions.

Figure 3. Two-hand interactions synthesized by InterHand-
Gen. The sampled interactions are plausible and diverse.

4.2. Object-Conditioned Two-Hand Synthesis

Data. We use the recently released ARCTIC [13] dataset.
Unlike the existing hand-object datasets [9, 18, 19, 31, 39]
that are mostly limited to single-hand grasps, ARCTIC
captures diverse two-hand and object interaction scenarios,



Table 1. Quantitative comparisons of two-hand interaction synthesis with and without an object. Bold indicates the best scores, and
underline indicates the second best scores. In both experiments, ours significantly outperforms the baselines on most of the metrics. We
conduct 20 evaluations and report the average scores, where 10K samples are used in two-hand synthesis and 30K samples (3K samples
per object category) are used for two-hand-object synthesis in each evaluation.

(a) Comparisons on two-hand interaction generation (Section 4.1).

Method FHID ↓ KHID (×10−2 )↓ Diversity ↑ Precision ↑ Recall ↑ PenVol (mm3 )↓
VAE [76] 8.18 6.23 2.32 0.55 0.02 7.32

BUDDI* [44] 3.48 4.10 2.71 0.56 0.47 0.82
Ours w/o Decomposition 2.09 0.75 2.34 0.86 0.35 3.10
Ours w/o Shared Network 1.32 0.46 2.46 0.92 0.42 3.95

Ours 1.00 0.15 3.59 0.86 0.85 0.76

(b) Comparisons on object-conditioned two-hand interaction generation (Section 4.2).

Method FHID ↓ KHID (×10−1 )↓ Diversity ↑ Precision ↑ Recall ↑ PenVol (mm3 )↓
ContactGen* [38] 22.56 1.58 6.70 0.21 0.37 1.80

VAE [76] 21.75 2.12 5.29 0.60 0.17 4.98
BUDDI* [44] 22.51 1.35 6.50 0.28 0.36 1.38

Ours w/o Decomposition 19.84 1.18 6.28 0.40 0.67 6.06
Ours w/o Shared Network 17.00 0.97 6.15 0.74 0.63 3.85

Ours 12.91 0.55 6.77 0.71 0.67 1.33

such as opening a box or operating an espresso machine. It
contains 339 sequences of interaction with 10 objects. We
follow the split protocol (protocol 1) released by ARCTIC,
resulting in 192K training samples, 25K validation samples,
and 25K test samples.
Baselines. We mainly consider the two-hand generation
baselines from Section 4.1 modified to additionally take
an object conditioning in the same manner as our method
(Section 3.6). The baselines were further tuned to perform
fair comparisons (please refer to the supplementary for de-
tails). We additionally consider ContactGen [38], which is
the most recent state-of-the-art method on single-hand and
object interaction synthesis. We modify ContactGen to gen-
erate two-hand interactions and denote it by ContactGen*.
Evaluation metrics. Similar to Section 4.1, we use FHID,
KHID, diversity, precision-recall, and penetration volume.
To extract two-hand interaction features relative to an ob-
ject, we train a PointNet++ [51] backbone network specifi-
cally for 3D two-hand and object interactions similar to Sec-
tion 4.1. Please refer to the supplementary for the details of
our backbone network. Note that we compute the metrics
per object category and report the average scores.
Results. In Table 1b, our method is shown to outperform
the baseline methods on most of the metrics by a large
margin. Especially, our method yields significantly better
scores on FHID and KHID. One notable observation is that
ContactGen* does not achieve good performance on gen-
eral two-hand and object interaction synthesis, by biasing
towards heavy contact cases due to its reliance on the con-
tact prior. In contrast, as shown in Figure 4, ours is capable

of generating plausible bimanual hand interactions includ-
ing loosely contacted cases.

Figure 4. Object-conditional two-hand interaction synthesized
by InterHandGen. Ours can model plausible and diverse biman-
ual interactions.

4.3. Monocular Two-Hand Reconstruction

Baseline and Data. We consider InterWild [41] for the
baseline, which is the most recent state-of-the-art work pro-
posed for interacting two-hand reconstruction from in-the-
wild images. For network training, InterWild uses mixed-
batches consisting of motion capture data with full 3D shape
supervision (InterHand2.6M [42]) and in-the-wild data with
weak 2D keypoints supervision (MSCOCO [26, 37]). In
this ill-posed setup, we leverage our diffusion prior to re-
duce depth ambiguity. In particular, we utilize our pre-
trained two-hand diffusion model (used in Section 4.1) to



compute the regularization term Lreg defined in Equation 9.
We incorporate Lreg into the loss function of InterWild dur-
ing network training, while other baseline settings (e.g.,
model architecture) remain unchanged. For testing, we use
InterHand2.6M [42] test set and HIC [66] following the
original evaluation protocol of InterWild.
Evaluation metrics. We use the same metrics as in Inter-
Wild to measure the accuracy of two-hand reconstruction:
Mean Per-Joint Position Error (MPJPE), Mean Per-Vertex
Position Error (MPVPE), and Mean Relative-Root Position
Error (MRRPE) in mm .
Results. As shown in Table 2, our generative prior boosts
the reconstruction accuracy of the baseline method in terms
of all three metrics, setting new state-of-the-art on monoc-
ular two-hand reconstruction from in-the-wild images. Es-
pecially, it leads to 10% and 18% improvements in MRRPE
on InterHand2.6M and HIC datasets, respectively. These
results indicate that our generative prior is effective in re-
ducing the shape ambiguity in an ill-posed setup. We also
highlight again that our pre-trained prior can be easily in-
corporated into the existing work in a plug-and-play man-
ner, without a modification of the baseline architecture.

Table 2. Quantitative comparisons of interacting two-hand re-
construction from in-the-wild images. Utilizing our generative
prior can boost the two-hand reconstruction accuracy.

(a) Results on InterHand2.6M [42].

Method MPVPE ↓ MPJPE ↓ MPRPE ↓

InterWild [41] 13.01 14.83 29.29
InterWild [41] + Ours 12.10 14.53 26.56

(b) Results on HIC [66].

Method MPVPE ↓ MPJPE ↓ MPRPE ↓

InterWild [41] 15.70 16.17 31.35
InterWild [41] + Ours 15.04 15.45 26.63

4.4. Ablation Study

We perform an ablation study to investigate the effective-
ness of our self-attention module (SelfAtt), classifier-free
guidance [21] (CFG), and anti-penetration guidance (APG).
Table 3a compares the generated sample fidelity (measured
on FHID and Precision) and diversity with respect to SelfAtt
and CFG. It shows that using SelfAtt improves both fidelity
and diversity, while CFG provides a fidelity-diversity sweet
spot as discussed in [21]. In Table 3b, we compare the av-
erage penetration volume (in cm3) and penetration distance
(in cm) with and without APG. We also measure the prox-
imity ratio, which is the ratio of generated frames that con-
tain close two-hand interactions (where the inter-mesh dis-
tance is below τ = 2cm). It is shown that APG significantly
reduces the amount of shape penetration while not hurting

the proximity ratio.

Table 3. Ablation study results. We use the same setting as in the
two-hand interaction generation experiments (Section 4.1).

(a) Comparisons on sample fidelity and diversity. We compare to our
method variations in which self-attention (Ours w/o SelfAtt) or classifier-
free guidance (Ours w/o CFG) is not used, respectively.

Method FHID ↓ Precision ↑ Diversity ↑

Ours w/o SelfAtt 2.87 0.86 3.16
Ours w/o CFG 1.12 0.84 3.61

Ours 1.00 0.86 3.59

(b) Comparisons on inter-penetration. We compare to our method varia-
tion where anti-penetration guidance is not used (Ours w/o APG). PenVol,
PenDist, and ProxRatio denote penetration volume, penetration distance,
and proximity ratio, respectively.

Method PenVol ↓ PenDist ↓ ProxRatio ↑

Ours w/o APG 6.58 0.40 0.97
Ours 0.76 0.04 0.97

5. Conclusion and Future Work
We presented InterHandGen, a diffusion-based framework
that learns the generative prior for two-hand interaction with
or without an object. Ours provides a theoretical framework
to decompose the joint distribution into a sequential mod-
eling problem with unconditional and conditional sampling
from a diffusion model. In particular, our experiments show
that achieving both diverse and high-fidelity sampling is
now possible with the proposed cascaded reverse diffusion.
Our approach can be easily extended to more instances, and
is easy to integrate into existing learning methods, setting
a new state-of-the-art performance on two-hand reconstruc-
tion from in-the-wild images.
Limitation and Future Work. Due to the generality of our
method, the proposed diffusion prior can be jointly trained
with heterogeneous datasets (i.e., a single hand only, a sin-
gle hand with an object, two hands, and two hands with an
object) to build a universal hand prior for all hand-related
tasks. Please refer to the supplementary for more discus-
sion. Other future work includes the extension to the tem-
poral dimension and other interaction synthesis problems
beyond hands (e.g., animal or human bodies). We hope that
our approach will be an important stepping stone towards
a unified interaction prior across categories and that it will
inspire follow-up work.

Acknowledgements. This work was in part supported by NST grant
(CRC 21011, MSIT), KOCCA grant (R2022020028, MCST), and IITP
grant (RS-2023-00228996, MSIT). M. Sung acknowledges the support
of NRF grant (RS-2023-00209723) and IITP grants (2022-0-00594, RS-
2023-00227592) funded by MSIT, Seoul R&BD Program (CY230112),
and grants from the DRB-KAIST SketchTheFuture Research Center,
Hyundai NGV, KT, NCSOFT, and Samsung Electronics.



References
[1] Abien Fred Agarap. Deep learning using rectified linear units

(relu). CoRR, abs/1803.08375, 2018. 6
[2] Anil Armagan, Guillermo Garcia-Hernando, Seungryul

Baek, Shreyas Hampali, Mahdi Rad, Zhaohui Zhang,
Shipeng Xie, MingXiu Chen, Boshen Zhang, Fu Xiong,
et al. Measuring generalisation to unseen viewpoints, articu-
lations, shapes and objects for 3d hand pose estimation under
hand-object interaction. In ECCV, 2020. 2

[3] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim.
Weakly-supervised domain adaptation via gan and mesh
model for estimating 3d hand poses interacting objects. In
CVPR, 2020. 2

[4] Luca Ballan, Aparna Taneja, Jürgen Gall, Luc Van Gool, and
Marc Pollefeys. Motion capture of hands in action using
discriminative salient points. In ECCV, 2012. 2

[5] Arpit Bansal, Hong-Min Chu, Avi Schwarzschild,
Soumyadip Sengupta, Micah Goldblum, Jonas Geip-
ing, and Tom Goldstein. Universal guidance for diffusion
models. In CVPRW, 2023. 5

[6] Jonathan Baxter. A model of inductive bias learning. JAIR,
2000. 4
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InterHandGen: Two-Hand Interaction Generation
via Cascaded Reverse Diffusion

Supplementary Material

In this supplementary document, we first discuss the po-
tential use of our method to build a universal hand prior
(Section S.1) and show the additional qualitative results
(Section S.2) of the experiments in the main paper. We
then report additional experimental comparisons between
parallel and cascaded generation approaches (Section S.3).
Lastly, we report the implementation details (Section S.4).

S.1. Future Work: Universal Hand Prior

Due to the generality of our method, the proposed prior can
be jointly trained with heterogeneous datasets to build a uni-
versal hand prior for all hand-related problems. Recall that
our method learns the decomposed hand distributions using
a single diffusion network via conditioning dropout. Since
our network training (Algorithm 1 in the main paper) in-
volves learning on both single-hand and two-hand training
examples to model pϕ(xr) and pϕ(xr|xl), respectively, we
can incorporate any existing single-hand datasets into the
training as well. Taking a step further, we can also simul-
taneously apply dropout to the object condition c to model
both object-conditional and unconditional (two-)hand dis-
tributions using a single diffusion network. Overall, our
learning method based on the distribution decomposition
along with conditioning dropout is naturally suited to build
a multi-task prior trained with heterogeneous datasets (i.e.,
a single hand only, a single hand with an object, two hands,
and two hands with an object).

While building a universal hand prior falls outside the
scope of this work, we perform a toy experiment to show-
case its possibility. We train our diffusion prior on two-hand
dataset (InterHand2.6M [42]) along with multiple single-
hand datasets [16, 71, 74, 75] and report the qualitative
examples of two-hand and single-hand synthesis in Fig-
ures S1a and S1b, respectively. Sampling from our prior
yields plausible single-hand and two-hand shapes. Impor-
tantly, this setting is shown to further boost the diversity of
two-hand interaction synthesis (from 3.59 to 4.39) by ex-
posing our prior to richer training examples. In Figure S1c,
we also show the generation examples that could not be
sampled using the prior trained on InterHand2.6M only. In
particular, we collect the generated samples that are false
positive with respect to the KNN manifold [58] modeled
by the prior trained on InterHand2.6M only. As shown in
the figure, these samples also model plausible two-hand
interactions. One current limitation is that this universal
prior does not necessarily improve the plausibility metric
(e.g., FID, KID, precision) scores compared to individually

trained priors. We hypothesize that existing datasets in each
target domain such as InterHand2.6M [42] captures only the
subset of the true distributions, and individual datasets share
very little with each other to bring synergy to the joint learn-
ing. We leave building a more synergistic universal prior for
future work.

(a) Two-hands sampled by our prior.

(b) Single-hands sampled by our prior.

(c) False positive samples with respect to the manifold [58] modeled by
the prior trained on InterHand2.6M [42] only.

Figure S1. Hands sampled by our prior trained on two-hand
dataset [42] and additional single-hand datasets [16, 71, 74,
75].



S.2. Additional Qualitative Results

S.2.1 Monocular Two-Hand Reconstruction

In Figure S2, we provide the qualitative comparison of our monocular two-hand reconstruction experiment in Section 4.3 in
the main paper. In the figure, brown boxes highlight areas where shape penetration occurs, and blue boxes denote regions with
inaccurate hand interaction (e.g., contact is absent where it should occur). While the baseline results of InterWild [41] contain
several examples with penetration or inaccurate hand interaction, our approach can generate more plausible reconstructions.
This indicates that leveraging our diffusion prior is effective in reducing ambiguity in an ill-posed monocular reconstruction
problem.

Input InterWild [7] InterWild [7] + Ours
Org. view Alt. view Zoom-in Org. view Alt. view Zoom-in

Figure S2. Qualitative results of our monocular two-hand reconstruction experiment in Section 4.3. The top four rows show results
from the HIC dataset [66], while the bottom four rows show results from the InterHand2.6M dataset [42]. Brown boxes highlight areas
where shape penetration occurs, and blue boxes denote regions with inaccurate hand interaction (e.g., contact is absent where it should
occur). Utilizing our generative prior leads to more plausible reconstructions.



S.2.2 Two-Hand Interaction Synthesis

In Figure S3, we additionally show the qualitative comparison of two-hand interaction synthesis experiment in Section 4.1 in
the main paper. In the figure, brown boxes denote regions with implausible two-hand interaction (e.g., where penetration or
unnatural hand articulation occurs). Compared to the baselines, our method can produce more realistic two-hand interactions
with less penetration. Especially, our method is shown to plausibly generate complex and tight two-hand interactions, for
example, fingers of two hands crossing one another.

Ours w/o 
Decomposition

Ours w/o
Shared Network

BUDDI [9]

VAE [22]

Ours

Figure S3. Qualitative results of two-hand interaction synthesis experiment in Section 4.1. Brown boxes denote regions with implausi-
ble two-hand interaction (e.g., where penetration or unnatural hand articulation occurs). Our method can produce more plausible two-hand
interactions with less penetration.



S.2.3 Object-Conditioned Two-Hand Interaction Synthesis

In Figure S4, we also report the qualitative comparisons of object-conditional two-hand synthesis experiment in Section 4.2
in the main paper. Similar to the previous figures, brown boxes denote implausible regions with penetration or unnatural hand
articulation. Our approach consistently demonstrates its capability to generate more plausible two-hand interactions, that are
also closely adhering to the conditioning object.

ContactGen* [6]
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Shared Network

BUDDI [9]

VAE [22]
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Figure S4. Qualitative results of two-hand interaction synthesis experiment in Section 4.2. Brown boxes denote implausible regions
with penetration or unnatural hand articulation. Our approach can generate more realistic bimanual interactions.



S.3. Parallel vs. Cascaded Generation

We additionally show the experimental comparisons be-
tween our cascaded generation approach and the parallel
two-human generation approach of ComMDM [59] mod-
ified for two-hand generation. Directly following [59], we
added the ComMDM communication block to two paral-
lel single-hand diffusion networks having shared parame-
ters. We increased the number of attention layers by one
to achieve better results, while the other hyperparameters
remain the same as in [59]. As shown in Tab. S1, our cas-
caded approach leads to better generation quality due to (1)
the reduced dimensionality of the generation target and (2)
the conditioning on clean (rather than noisy) instances of
another hand.

Table S1. Comparisons between the parallel and cascaded gen-
eration approaches.

Method FHID (↓) Precision (↑) Diversity (↑)

Parallel (ComMDM [59]) 2.19 0.75 2.68
Cascaded (Ours) 1.00 0.86 3.59

S.4. Implementation Details

We now report the implementation details for the repro-
ducibility of the proposed method. Note that we also plan
to publish our code after the review period.

S.4.1 Evaluation Protocol

Two-hand feature backbone. We modify PointNet++ [51]
to regress (1) two hand poses in axis-angle representation,
(2) relative root rotation in 6D rotation representation [73],
and (3) relative root translation given a two-hand shape rep-
resented as a point cloud. Our network architecture mainly
follows the architecture of the original PointNet++ encoder,
except for the output dimension of the last fully connected
layer modified to 108 (in order to match the concatenated
dimension of our estimation targets). We train our net-
work on InterHand2.6M [42] dataset for 200 epochs with
a batch size of 32. Other training details (e.g., learning rate,
batch size) remain unchanged from the original PointNet++
model. The test MPJPE of the resulting model is 1.49mm .
Object-conditional two-hand feature backbone. The net-
work architecture and training details are the same as those
of our two-hand feature backbone, except that the network
regresses (1) two-hand root rotations and translations in the
object-centric coordinate space (not the relative root trans-
formation between two hands) and that (2) the object feature
is additionally incorporated to estimate two-hand poses. In
particular, we use the PointNet++ [51] embedding mod-
ule in our object-conditional diffusion model (refer to Sec-
tion 3.6) to extract the object feature and feed it to the first

fully connected layer of our two-hand pose regression net-
work.
Evaluation metrics. We mainly follow the implementation
details of the existing human pose and motion generation
work [52, 63] for computing Fréchet Distance [20], Kernel
Distance [7], diversity [52, 63] and precision-recall [58].
One important difference is that we adapt our own two-
hand backbone network for feature extraction. For measur-
ing penetration volume, we first voxelize two hand meshes
with 1mm grids and count the number of voxels that are
occupied by both hands similar to HALO [28].

S.4.2 Network Training and Inference

Training. We train our diffusion network for 80 epochs
using an Adam optimizer with an initial learning rate of
2 × 10−4. We additionally use a learning rate scheduler
to decay the learning rate by 10% every 20 epochs. We set
the batch size as 256 and 64 for unconditional and object-
conditional diffusion networks, respectively. For diffusion
noise scheduling, we use linear scheduling from β1 = 10−4

to βT = 0.01 [22]. We set the maximum value of diffu-
sion time as T = 256 and the probability of conditioning
dropout as puncond = 0.5. Note that, for unconditional
two-hand synthesis, only the relative root transformation
between two hands is meaningful in modeling plausible in-
teractions. Thus, we supervise the root transformation of
the interacting hand generation (pϕ(xr|xl)) with the ground
truth transformation of xr relative to xl, while not imposing
supervision to the root transformation of the anchor hand
generation (pϕ(xr)). For object-conditional two-hand syn-
thesis, we supervise both generation cases with the ground
truth root transformations relative to the conditioning ob-
ject.
Inference. For network inference, we use DDIM [61] sam-
pling with 32 denoising steps. We set the classifier-free
guidance weight as wcfg = 0.1. For anti-penetration guid-
ance weight wpen , we use a multiplicative scheduling start-
ing from 4 at t = 0 with a rate of 0.9. This strategy is
adopted to avoid using a high weight for anti-penetration
guidance in the early stages of the denoising process, where
samples may still exhibit high levels of noise.
Mirroring transformation Γ [55]. We adopt the same mir-
roring transformation function Γ(·) used in MANO [55].
Γ(·) multiplies the input instance by the transformation ma-
trix T, which is defined as:

T =

−1 0 0
0 1 0
0 0 1

 . (10)

Note that, for MANO hand shapes represented as MANO
parameters, applying Γ(·) to the root rotation parameter is
sufficient, as the local hand deformations are also mirrored
along the MANO kinematic chain starting from the root



pose (please refer to [55] for more details on the MANO
model).

S.4.3 Network Architecture

Hand embedding. For embedding noisy right-hand pa-
rameter xt ∈ R64 and conditioning left-hand parameter
xl ∈ R64, we use two separate MLPs with the same net-
work architecture. Each MLP consists of two fully con-
nected layers, whose output feature dimensions are 2056
and 512, respectively. The first layer is followed by Swish
activation. We denote the resulting embeddings for xt and
xl by embxt

, embxl
∈ R512, respectively.

Diffusion time embedding. For embedding diffusion time
t ∈ N, we use Sinusoidal embedding in DDPM [22] to
extract a 512-dimensional feature. We then use an MLP
(whose architecture is the same as the MLP used for hand
embedding) to further extract the feature of t. We denote
the resulting embedding for t by embt ∈ R512.
Object embedding. For embedding the object point cloud
O, we use a PointNet++ [51]-based architecture. We mod-
ify the original PointNet++ encoder by dropping the last
layer and changing the final feature dimension from 256
to 512. Other implementation details remain unchanged
from [51]. We denote the resulting embedding for O by
embO ∈ R512.
Transformer encoder. We perform channel-wise concate-
nation of embxt

, embxl
, embt, and (optionally) embO to

consider each embedding as an input token to a transformer
encoder. For the architecture of the transformer encoder,
we use two self-attention blocks [67] with four attention
heads. Each head consists of two fully connected layers,
whose output feature dimensions are 2048 and 512, re-
spectively. Each layer is followed by Layer Normaliza-
tion, ReLU activation, and dropout with a rate of 0.1. Af-
ter the self-attention modules, we use one fully connected
layer to map the flattened output tokens into a global fea-
ture embglo ∈ R2056.
Output decoder. We use an MLP-based decoder to esti-
mate the clean hand parameter xr ∈ R64 from embglo . The
MLP consists of seven fully connected layers. The output
feature dimension of all layers is 2056, except for the last
layer whose output dimension is 64 to model the hand pa-
rameter. Each layer (except for the last layer) is followed
by ReLU activation. Note that we use skip connections for
all layers, in which the input feature is concatenated with
the condition embeddings (i.e., embxl

embt and optional
embO). In the odd-numbered layers, we additionally con-
catenate the noisy hand embedding embxt

to the input fea-
ture.

S.4.4 Baseline Comparisons

Two-hand synthesis. For VAE [76] and BUDDI [44],

we use the original network architectures with minor
modifications to obtain better generation results on Inter-
Hand2.6M [42] dataset to perform fairer comparisons. For
VAE, we empirically observed that increasing the feature
dimension (from 128 to 256) and the number of encoder
layers (from 4 to 5) improves the performance. For BUDDI,
we increased the feature dimension of the self-attention
blocks from 152 to 184 to obtain better generation results.
For our method variations, we use the same implementation
details except for the changes specified in Section 4.1.
Object-conditional two-hand synthesis. For BUDDI [44]
and our method variations, we incorporate the object feature
encoded by PointNet++ [51] as an additional token to the
transformer encoder in a similar manner to our method. For
VAE [76], we feed the object feature as an additional input
to the second layer of both the encoder and decoder, similar
to HALO [28]. For ContactGen [38], we extend the single-
hand contact map to a two-hand contact map and optimize
both hands accordingly.
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